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ABSTRACT 

In this paper, we share major lessons we have learned in our 

curriculum analysis explorations and provide suggestions for future 

mathematics curriculum research. Specifically, we will discuss the 

successes and challenges of using comparative methods and 

developing analytical frameworks. Using an old Chinese saying, 

follow the vine to get the melon (顺藤摸瓜), our journey starts with 

getting a holistic picture of standards and moves to identifying a 

specific topic in the textbooks. We first conducted a study to 

compare the geometry standards of the Common Core State 

Standards for Mathematics (CCSSM) and the Chinese Compulsory 

Education Mathematics Curriculum Standards (CMCS); then we 

analyzed the presentation of a specific topic, triangle congruence, in 

multiple geometry textbooks. For each comparative study we 

conducted, developing the analytical framework that can be used to 

guide future investigations constituted a critical step in the research 

methodology. We have learned lessons from adapting the well-

known van Hiele model, which was created for the development of 

geometric reasoning, into a lens for a detailed curriculum analysis. 

We have also learned lessons from elaborating on the key constructs 

from the “Mathematics Curriculum as Story” framework for coding 

and analysis. These lessons as well as our future directions serve as 

the primary focus of this paper. 
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INTRODUCTION  
Since 2018, our research team has been engaged in curriculum studies comparing and analyzing 

U.S. and Chinese mathematics curricula regarding geometry, including curriculum standards and 

textbooks. As mathematics educators, we all have completed our K–12 education under the 

Chinese educational system and teach K–12 preservice teachers in the U.S. The cross-national 

learning and teaching experiences provided us firsthand experiences with mathematics 

curricula in both China and the U.S. We naturally engaged in curriculum comparative studies in 

the two countries. This paper intends to convey the insights we have gained about methodology 

and framework during this journey, with the goal of inspiring future undertakings in curriculum 

studies. 

Geometry curriculum drew our attention because we have learned from cross-national 

assessments (e.g., TIMSS) that U.S students’ geometry performance is far behind their 

counterparts from East Asian countries (Mullis et al., 2015). Compared with other areas of 

mathematics, U.S. geometry curriculum is relatively weak, which leads to students’ less 

competitive achievements (e.g., Wu & Wang, 2022). In addition, we have noticed from our 

teaching that many preservice teachers in the U.S. have less interest in geometry and are afraid 

of teaching geometry. We navigated our research topic in geometry and started with standards 

comparison. As official curriculum, standards determine learning goals and provide a blueprint 

for teacher-intended curriculum (e.g., standards-aligned textbooks), and then potentially 

influence assessments that measure how learning goals have been achieved (Remillard & Heck, 

2014). Starting from the standards, we intended to gain an overall understanding of the 

geometry curriculum in China and the U.S. The standards distribute the mathematics content 

into yearly learning goals, which raised our interest in what content students are provided and 

how students are expected to learn year by year.  

With these initial inquiries, we chose to investigate the Common Core State Standards 

for Mathematics (CCSSM), which is a commonly adopted designated curriculum across the 

states (Reys, 2014). Compared to pre-CCSSM standards, CCSSM made a considerable change in 

geometry; it places great emphasis on geometric concepts and informal and formal deduction, 

and increases attention on transformational geometry, including the verification of congruence 

and similarity through a series of transformations (e.g., Conley et al., 2011; Dingman et al., 2013; 

Tran et al., 2014). In addition, CCSSM is a set of learning goals that was developed as a result of 

the international assessments and cross-national curriculum comparisons (e.g., Schmidt et al., 

2005) to address the “mile wide and an inch deep” characteristics of the U.S. curriculum. 

Compared with the decentralized U.S educational system, the Chinese education system is 

highly centralized; since its release, the Chinese Compulsory Education Mathematics Curriculum 

Standards (CMCS) has been the only up-to-date set of national standards (Ministry of Education, 

2011). Using a comparative methodology, we compared CCSSM and CMCS and obtained a 

comprehensive understanding of how these two sets of standards are organized, how they 
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proceed with big geometrical ideas, what learning goals are created by schooling years, and 

what guidance is offered by standards toward addressing these goals (Lo et al., 2022). 

Keeping in mind the idea that standards are “ends” and textbooks are “means” (Stein et 

al., 2007), one of the outstanding findings from the comparison between CCSSM and CMCS was 

that the two official curricula present the topic of congruence differently. This finding from the 

standards analysis prompted us to take a closer look at how similarly or differently textbooks 

present the topic of congruence based on these two approaches. To achieve this goal, we 

conducted textbook analyses of the topic of triangle congruence in which we compared several 

American textbooks and a Chinese textbook (Lo et al., 2021; 2023). The standards analysis built 

a foundation for our subsequent textbook analysis. From the standards analysis, we mapped 

the concept of congruence vertically, i.e., how the curriculum builds mathematical 

understanding of the concept across grade levels, how the concept is developed over the years, 

and how the concept is extended to other new concepts. We also charted the concept 

horizontally by exploring related mathematical ideas and concepts in the same grade level. 

Through our exploration, we have developed two distinct perspectives. The first perspective 

focuses on the development of particular concepts that align with the learning objectives 

defined in the standards. The second perspective involves comprehensively understanding 

specific mathematical concepts in textbooks. 

Like conducting research in any area, in this process we have learned from our own 

experiences of the inquiry as well as the experiences of others. Our journey in curriculum 

studies, from standards to textbooks, can be described by an old Chinese saying, Follow the vine 

to get the melon (顺藤摸瓜), which means first getting a holistic picture of the official 

curriculum standards, and then moving on to a specific topic in the textbooks. As our research 

team reflected on the journey in curriculum studies from standards to textbooks and envisioned 

future directions, two key lessons stood out. Beyond sharing our research journey in curriculum 

study, this paper reports on the key lessons we have learned: (1) In curriculum studies, even the 

accepted theories or frameworks may not be applicable for some specific topics; researchers 

thus need to adapt theories or develop frameworks aligning with the focus of the analysis; (2) 

Comparative methodological tools are an effective approach to conducting curriculum analysis, 

serving as a mirror that allows us to discover nuanced information that might be neglected when 

focusing on only one curriculum. Along with the lessons learned, we also discuss factors that we 

have yet to capture in our current analyses. Finally, we look forward to future directions for 

continuing this journey of curriculum analyses.  

Lesson # 1. Adapting Framework Aligning with the Focus of the Analysis 

In curriculum studies, even the accepted theories or frameworks might not be directly 

applicable to some specific research questions; researchers thus need to adapt theories or 

develop frameworks aligning with the focus of their analysis. For each study we conducted, 

developing the analytical framework that could be used to guide future investigations 

constituted a critical step for the research methodology. We have learned lessons from adapting 
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the well-known van Hiele model, which was created for the development of geometric 

reasoning, into a lens for a detailed curriculum standards analysis. We have also learned lessons 

from elaborating the key constructs from the “Mathematics Curriculum as Story” framework 

through a narrative lens to gain a holistic view of textbooks. In this section, we use specific 

examples to illustrate our adaption of these two frameworks in our studies. 

Adapting the van Hiele Level Framework 

With the purpose of examining the expectations of geometrical development, we needed a 

framework that could provide theoretical support to analyze the levels of learning experiences 

in standards. We also needed the framework to support our analysis focusing on the learning 

trajectory of specific topics within and across grade levels. van Hiele levels (1959/1984), rooted 

in mathematics education, is a frequently used framework to describe students’ geometric 

development. Though discussions around whether the van Hiele levels are sequential, linear, or 

discrete have been continuing, previous research has confirmed that the van Hiele levels model 

is an effective tool to examine students’ geometrical understanding (e.g., Fuys et al., 1988; Senk, 

1989; Usiskin, 1982; Wang & Kinzel, 2014). Specifically, researchers have used van Heile levels 

to compare learning expectations in different standards and have confirmed van Hiele levels 

could be used as a framework to examine the quality of geometry standards (e.g., Dingman et 

al., 2013; Newton, 2011).  

Initial Use of the Existing Framework 

Through sufficient literature review, we confirmed that the van Hiele theory is applicable as an 

analytic framework for geometry standards comparison. However, when we went into the 

analysis process, we found the levels were too broad and not sufficiently applicable to directly 

identify the level of a learning expectation. For instance, the feature of van Hiele level 2 is that 

“properties are perceived, but they are isolated and unrelated” (Mayberry, 1983, p. 59), and the 

feature of van Hiele level 3 is that “definitions are meaningful, with relationships being 

perceived between properties and between figures. Logical implications and class inclusions are 

understood. The role and significance of deduction, however, is not understood” (Mayberry, 

1983, p. 59). We were not able to reach a consensus on some specifics of the coding when 

considering the textual meaning of standards. 

Expanding the Framework 

To increase the validity of coding, we used a direct comparison approach to carefully examine 

each learning expectation in the two documents (Tran et al., 2016). Drawing from Newton 

(2011) and Tran et al. (2014), we considered a learning expectation to be a standard unit or a 

component of a standard unit. If a standard included multiple mathematics foci, the standard 

was split into multiple learning expectations (Lo et al., 2022). In this phase, we looked for 

emerging themes. As we revisited the data multiple times, the learning expectations were 

sorted into topics, such as Recognizing figures, Understanding relationships between 3D and 2D 

figures, Transformation, etc. Under each topic, we noted learning expectations were in a 

progressive sequence across grade levels/bands in both standards documents. Then, we 
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returned to the van Hiele levels framework and developed topics at each level (see Table 1 

below). 

Table 1.  

Topics at van Hiele Levels 

Van Hiele Levels Topics 

Level 1 Recognizing figures 

Composing and decomposing figures 

Level 2 Recognizing figures by their specified attributes 

Understanding relationships between 3D and 2D figures 

empirically 

Recognizing transformation empirically 

Recognizing definitions empirically 

Level 3 Classifying figures 

Understanding definitions 

Developing informal proofs 

Constructing figures 

Understanding transformation 

Understanding relationships between 3D and 2D figures 

Level 4 Writing formal proofs 

(Lo et al., 2022, p. 44) 

The same topic develops across van Hiele levels. For instance, Recognizing 

transformation at van Hiele level 2 expects students to name different transformations from 

manipulations; at van Hiele level 3, students are expected to understand transformations by 

describing the relationships (points, sides, and angles) between the two shapes and recognize 

the line of symmetry, the center of rotation, and translation direction and distance. We coded 

each learning expectation into both topic and van Hiele levels.  

 Take the standard “Draw points, lines, line segments, rays, angles (right, acute, obtuse), 

and perpendicular and parallel lines. Identify these in two-dimensional figures” (CCSSI, 2010, p. 

32), for example. Through our analysis, we identified two distinct learning expectations: drawing 

these geometric elements and identifying them within two-dimensional shapes. This highlights 

that students are not merely expected to recognize the individual geometric figures but also 

need to know their attributes. Consequently, we classified this standard as meeting the criteria 

for van Hiele level 2. The progressive aspect of learning expectations in the same topic helped 

us to identify their corresponding van Hiele levels. In turn, the van Hiele levels framework also 

supported us in tracking the development of geometric topics. The topics and van Hiele levels 
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were two dimensions for our coding, which not only increased validity and reliability but also 

enriched the van Hiele level framework in standards analysis. By considering both dimensions, 

we are able to offer a more nuanced understanding of the curriculum standards. This approach 

not only ensures a more accurate classification of standards according to van Hiele levels but 

also sheds light on the progression of learning objectives.  

Adapting the Story Framework for Textbook Analysis 

As mentioned earlier, one of the main findings of the comparative standards analysis was the 

different treatments of the concept of triangle congruence in the U.S. and Chinese standards. 

We found that CCSSM defines congruence from a geometric transformation perspective as “the 

second can be obtained from the first by a sequence of rotations, reflections, and translations” 

(CCSSI, 2010, p. 55). CMCS expects students to understand the congruent triangle from the 

quantitative perspective, that corresponding pairs of sides and angles are congruent. This 

finding prompted us to take an in-depth look at the development of triangle congruence in two 

different mathematics textbooks: one from China and one from the U.S.   

Research on mathematics textbooks has made significant contributions in identifying and 

reporting features that can be used as the basis for comparisons. However, these findings 

collectively still fail to provide a sense of the changes and flow of the mathematical ideas 

throughout a textbook, nor are they able to account for the aesthetic of sequencing and 

presenting ideas in one way or another (Dietiker, 2015). Recognizing this limitation of the 

current research on mathematics textbook analysis, Dietiker (2015) proposed a story framework 

to analyze textbooks that aimed at filling these gaps. The Mathematics Curriculum as a Story 

framework includes four components: characters, actions, setting, and plot. Mathematical 

characters are “figures” that were brought into existence by descriptive naming that could be 

in a variety of forms, such as words, graphs, tables, or symbolic forms. Mathematical actions are 

manipulations taken by a mathematical character that result in a mathematical change. 

Mathematical setting is the space in which the mathematical character emerged and developed 

via mathematical actions. A mathematical plot is the “potential temporal dynamics of the story 

that encourages (or discourages) a reader to continue to advance through the mathematical 

story” (Dietiker, 2015, p. 299). We will share the lessons we learned from this process when 

conducting comparative textbook analyses on lessons of triangle congruence using the “action” 

component for illustration. We chose this particular component because it was the most 

challenging component among the four in our attempts to operationalize the framework for 

textbook analysis.  Focusing on it will illuminate the major lessons we learned.  

Initial Identification of Actions  

Dietiker (2015) defined mathematical actions as manipulations taken by an actor on a 

mathematical character that result in a mathematical change or creating a new mathematical 

character. The actors include the narrators or fictional characters embedded in the story or the 

readers, such as the researchers, teachers, or students. To identify the actions needed to make 

sense of triangle congruence, we started with a collection of triangle congruence units from 



      86 
 

 
JCSR 2023, 5(3):80-95

several U.S. high school geometry textbooks. It is easier to identify the actions when the 

textbooks are written in the form of a dialogue between the authors and the readers. For 

example, Figure 1 shows an investigation of side-side-side congruence from Discovering 

Geometry (Serra, 2003), which uses the actions of (1) duplicating segments, (2) constructing a 

triangle from three segments, and (3) comparing your triangle with those made by others, to 

determine if two triangles are congruent—all made explicit by the text. 

Figure 1.  

An example of a geometric investigation (Serra, 2003, p. 220) 

 

  

However, some textbooks contain worked-out examples with the solutions not written in a 

dialogue form, which is another common type of task in geometry textbooks. For example, 

Figure 2 contains an example of a deductive proof (Larson et al., 2007) that can be found in all 

geometry textbooks.  

Figure 2.  

An example of a deductive proof (Larson et. al. 2007, p. 240)  

 

 

In this case, a thought experiment is conducted to identify the mental actions that are 

required to carry out such proof. Here, we identified one action of applying a previously 

established property in Step 3 when the alternate interior angles theorem was used to establish 

a pair of congruent angles. Furthermore, we identified another action of corresponding, which 
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is needed to complete Step 5 when applying the SAS congruence correctly. Mathematically 

speaking, it would be incorrect to say triangle ABC is congruent to triangle ADC, even though we 

can name the same triangle with vertices in different consecutive order based on their locations: 

ADC or CDA. Therefore, a mental action is required to name the correct correspondence. Similar 

actions were identified from both investigative and proof types of activities from the geometry 

textbooks used for our analyses.   

 After we became more comfortable with identifying different actions needed for learning 

triangle congruence, we expanded our identification to more complex tasks from our collection 

of geometry textbooks. For example, we identified an additional action, translation, from the 

following exercise in Eureka Math (Great Minds, 2015) based on the solution provided in the 

teacher edition.   

Figure 3.  

An example of the “translation” code (Great Minds, 2015, p. 127) 

Given: 𝐽𝐾 = 𝐽𝐿; 𝐽𝑅̅̅ ̅ bisects 𝐾𝐿̅̅ ̅̅  

Prove: 𝐽𝑅̅̅ ̅  ⊥  𝐾𝐿̅̅ ̅̅  

 

 

One needs to translate the statement “JR bisects KL” to a pair of congruent angles: 

∠𝐾𝐽𝑅 = ∠𝐿𝐽𝑅. Then the congruence between triangle KJR and triangle LJR can be established 

with SAS: JK = JL (S), ∠𝐾𝐽𝑅 = ∠𝐿𝐽𝑅 (A), JR = JR (S). Since ∠𝐽𝑅𝐾 and ∠𝐽𝑅𝐿 are supplementary, 

∠𝐽𝑅𝐾 = ∠𝐽𝑅𝐿 = 90°. This relationship needs to be translated back to the statement “JR ⊥ KL.” 

This process of expansion continues until no new actions can be identified. To ensure the 

applicability of this work on comparative analyses of textbooks beyond those published in the 

U.S., we applied the identified action codes to a triangle congruence unit from a Chinese 

textbook. An additional action, “joining or separating,” emerged from the following task (Figure 

4) in the Chinese textbook (People’s Education Press [PEP], 2013). 

Figure 4.  

An example of joining or separating (PEP, 2013, p. 39) 

Given: The points E and F are on the segment BC, 

BE = CF, AB = DC, ∠B = ∠C.  

Prove: ∠A = ∠D 

 

One approach to prove ∠𝐴 = ∠𝐷 is to prove that ∆𝐴𝐵𝐹 is congruent to ∆𝐷𝐶𝐸, which can 

be established with SAS. The problem statement already contains a pair of congruent sides, 
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𝐴𝐵 = 𝐷𝐶 (S), and one pair of congruent angles, ∠𝐵 = ∠𝐶 (A). An additional pair of congruent 

sides, BF and CE, can be established by joining two segments to form 𝐵𝐹 = 𝐶𝐸 because 𝐵𝐹 =

𝐵𝐸 + 𝐸𝐹 = 𝐶𝐹 + 𝐸𝐹 = 𝐶𝐸. 

Revising the Action Codes 

After we came up with a set of initial codes, we reviewed and revised them to make sure that 

the codes communicated well the intended meanings. For example, early in the analysis, we 

found that many tasks in the textbooks were presented with diagrams. Some diagrams 

contained two triangles that were displayed with the orientation in which the corresponding 

relationship could be identified directly, while other diagrams were much more complicated, 

like the ones in Figure 3 and Figure 4, where some types of mental transformations would be 

required to identify the corresponding relationship. Initially, we named this action “orientating” 

but found the meaning of this word too broad to communicate the intended meaning. Then we 

thought of the word “transforming.” However, we further revised this to “corresponding” 

actions, partly because it fits the nature of the action better and partly because we like to 

reserve the word “transforming” for the transformations of reflection, rotation, and translation 

formally introduced in some CCSSM-based textbooks such as Eureka Math. In the end, we 

identified eight different actions: (1) applying, (2) adding auxiliary lines, (3) constructing, (4) 

corresponding, (5) drawing and comparing, (6) joining or separating, (7) transforming, and (8) 

translating. Together with the additional analysis based on the other three components, the 

story framework was used to compare two congruent triangle units: one from the U.S. and one 

from China (Lo et al., 2023).   

Looking back, the process of generating codes based on the existing theoretical 

framework for textbook analysis is iterative and ongoing. In the case of adapting the Story 

framework, we started with one textbook that was written in dialogue form, then moved to the 

other textbooks written in more formal mathematical language. We also started with coding 

simple tasks and then moved to more complex tasks. Finally, we applied the codes we generated 

from various U.S. geometry textbooks to a Chinese textbook to search for additional codes. We 

are open to and ready for the possibility that more codes will be needed when we continue to 

apply our codes to additional textbooks or standards from other countries included in our future 

analyses.  

Lesson # 2. Comparative Methodological Tool Provides a Mirror for Curriculum Analysis 

We are using the metaphor of a mirror to describe the comparative approach that we used in 

the curriculum analysis. Mirrors serve many functions in our daily life: We get face-to-face 

opportunities with ourselves, we see, and we learn about ourselves through the mirror. The 

mirror can also be used as an instrument to extend our vision and see the world in our blind 

spots. Like a mirror, comparative methods offer us a perspective that enables us to understand 

one curriculum better through learning about another.  

We chose comparative methods in our curriculum studies partially because the cross-

cultural comparison perspective offers us a unique opportunity to sensibly capture nuanced 
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information, as confirmed by previous researchers (e.g., Cai, 2002, 2005; Ma, 1999). On the 

other hand, we also are conscious that familiarity with teaching and learning mathematics might 

increase the possibility of over-interpretation. Thus, comparative approaches help us to 

regulate objectivity and familiarity. We use the metaphor of a mirror to indicate the function of 

the comparison. Similar to Lesson #1, in this section we also use examples from our studies to 

illustrate the unique insights gained through comparative approaches. 

Identifying Differences and Similarities Is Not the End Goal of Comparison 

With the comparative methodological approach, we found differences and similarities are often 

intertwined; different approaches might lead to the same learning objectives, and similar 

approaches might serve different learning goals. For instance, in our standards comparison, we 

found that transformation in both documents consists of reflection, translation, rotation, and 

dilation, and both CCSSM and CMCS expect students to develop an understanding of 

transformations from concrete objects and empirical experiences. However, CMCS presents 

transformation crossing grade bands, which reflects curricular coherence, whereas CCSSM 

introduces transformation in grade 8, followed by the concepts of congruence and similarity, 

which are defined from a transformation perspective (Authors, 2022a). The same concept in the 

two documents serves different purposes but eventually expects students to achieve similar 

learning goals, that is, to recognize the corresponding points, sides, and angles with position 

changes. We infer that the same concept could be developed through multiple learning 

trajectories. 

Through a comparative lens, we can capture new information from the curriculum we 

are familiar with. For instance, we did not realize that the connection between math and real 

life routinely provided in the PEP textbook was rather unique until we found that many 

geometry textbooks do not include applied mathematics in the topic of congruence. Figure 5 

below shows two examples from Eureka Math and PEP Math with two triangles of a shared side. 

The given statements and the conclusions that can be proved in the two exercises are the same. 

The exercise from Eureka Math is a decontextualized problem in which the given two pairs of 

sides are congruent, which is directly provided. The exercise from PEP Math is a problem related 

to real life that describes a craftsmen’s tool and provides a detailed description of how to use 

the tool. Students need to read, interpret the context, and abstract mathematical relations from 

words.  

In PEP Math, the statement “ensure the measurements on the two points M and N stay 

the same” indicates MC = NC. Students need to capture the information and successfully 

transfer the information to mathematical relations to solve the problem. Noticing this difference 

prompted us to ask the following questions: “What learning opportunities can real-life problems 

and decontextualized problems provide?” and “What obstacles would students face 

encountering these different contexts?” 
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Figure 5.  

An example of the same mathematical ideas presented in different contexts 

Opening Exercise 

Write a proof for the following 

question. Once done, compare 

your proof with a neighbor’s. 

Given: DE = DG, EF = GF 

Prove: DF is the angle bisector of 

∠𝐸𝐷𝐺. 

 
 (Great Minds, 2015, p. S136) 

Exercise 2 

Craftsmen often use an angle bisector tool to bisect an 

angle. The procedures are listed below: As the figure 

shows, ∠𝐴𝑂𝐵 is any angle, mark OM = ON from OA and 

OB, respectively. Move the angle square and ensure 

the measurements on the two points M and N stay the 

same. The line that goes through C and O is the angle 

bisector of ∠𝐴𝑂𝐵. Why? 

 

 

 

 

(PEP, 2013, p. 37) 

 

Enriching Understanding of Mathematics Curriculum Through Comparison  

A comparative method is a powerful tool that continues to enrich our understanding of curricula 

and enables us to gain new information in the iterative process. As we continued to explore 

geometry textbooks through a comparative lens, we found similar approaches used across 

different textbooks to highlight the application of geometry. For instance, Figure 6 shows two 

exercises of measuring the width of a pond/stream, from Discovering Geometry and the PEP 

textbook, respectively, that connect the concepts of congruent triangles to real-life scenarios. 

The objective of the task—using a triangle congruent condition to measure a specific distance 

indirectly—is the same. However, two different triangle congruent conditions are used. ASA is 

used in the exercise from Discovering Geometry, while SAS is used in the exercise from PEP 

Math.  

Furthermore, the nature of the presentation of each task is quite different. PEP Math 

describes the problem mathematically with mathematics relations such as DE = CB and CD = CA 

stated explicitly. It also provides students the opportunity to apply what they learned from the 

previous unit: that is, the vertical angles are congruent. Discovering Geometry offers a detailed 

description of a scenario and a diagram, yet all the mathematical relations are presented 

implicitly. Students need to identify the right angles from the context of holding a stick straight 

up, another pair of congruent angles from the action of “use the same line of sight,” as well as 

keeping a firm grip on the pole to establish a pair of congruent side lengths from the ground to 

eye level. The problem in Discovering Geometry is more contextualized and requires students 

to correctly interpret the embedded mathematical relations.  
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Figure 6.  

Examples of different mathematical approaches to the same real-life scenario   

Exercise 15  

Samantha is standing at the bank of a stream, 

wondering how wide the stream is. Remembering her 

geometry conjectures, she kneels down and holds her 

fishing pole perpendicular to the ground in front of 

her. She adjusts her hand on the pole so that she can 

see the opposite bank of the stream along her line of 

sight through her hand. She then turns, keeping a firm 

grip on the pole, and uses the same line of sight to 

spot a boulder on her side of the stream. She 

measures the distance to the boulder and concludes 

that this equals the distance across the stream. What 

triangle congruence shortcut is Samantha using? 

Explain.  

 
Serra, 2003, p. 240 

Example 2  

To measure the distance between 

point A and point B outside a pool, 

select a point C on the land which 

can get to A and B without passing 

the pool. Draw the segment from 

A to C and extend it to D and make 

CD=CA. Draw the segment from B 

to C and extend it to E and make 

CE=CB. Draw the segment from D 

to E; the measurement of DE is 

equal to the distance from A to B. 

Why? 

 
PEP, 2013, p. 38 

 

The purpose of comparing is not to make claims about which curriculum is better. Merely 

reporting differences is insufficient to make a significant contribution to our ultimate goal of 

improving student learning. We need to understand the curriculum comprehensively as a 

system and use the findings to make suggestions. The comparative methodological approach 

provides us a lens to gain rich information to understand how the curriculum can support 

teachers/students to achieve learning objectives.  

Looking Back and Looking Ahead 

Reflecting on our journey of comparative curriculum analyses, we would like to acknowledge 

some potentially important factors that we have yet to fully consider in our current analyses. 

One such factor is the structural differences in the standards and textbooks from different 

countries. For example, CCSSM is organized by grade level through K–8 and by content-based 

standards in high school. CMCS is organized by three grade bands, Grades 1–3, Grades 4–6, and 

Grades 7–9. In order to compare, we decided to form comparable grade bands for CCSSM, as 
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seen in Table 2. Although doing so makes the comparison possible, we might have failed to 

account for some intended connections across K–8 by the writers of CCSSM.  

Table 2.  

Grade Bands for Standards Analysis  

 Lower-Grade Band Middle-Grade Band Upper-Grade Band 

CCSSM K–3 Grades 4–6 Grades 7, 8, & high school 

CMCS Grades 1–3 Grades 4–6 Grades 7–9 

 

Similar examples can be seen in our study of the introduction of triangle congruence in 

U.S. and Chinese textbooks. For example, the topic of triangle congruence is taught in all Chinese 

schools in grade 8 as part of the compulsory education that has been prescribed by the national 

curriculum standards, CMCS. However, the same topic could be taught in any grade as part of 

the high school curriculum. The diverse high school student population might have played an 

important role in textbook design. Furthermore, the U.S. textbooks in our study are structured 

by lessons, while the Chinese textbooks are structured by main ideas in chapters and units 

without explicit demarcation of day-by-day lessons. By using lessons as the unit of comparison, 

we might have missed some important built-in continuity with the Chinese unit structure.  

Another type of influencing factor is culturally rooted. For example, under the centrally 

controlled education system in China, geometry, as an important area of mathematics, is 

studied by all high school students. Furthermore, students’ academic performance on the 

entrance exams determines their further education and even career selection. This kind of 

system directly affects teaching and learning, and thus impacts the written and intended 

curriculum. Prior research studies that have compared mathematics textbooks from the U.S. 

and several Asian countries, such as China, Japan, and Korea, which have examination-oriented 

systems, found that more mathematics topics are introduced consistently in earlier grades in 

the latter group than in the U.S. (e.g., Jones & Fujita, 2013; Wang et al., 2018). As an 

embodiment of culture, the curriculum should not be separated from socio-cultural influence. 

Not taking the context (e.g., culture) into account, the analysis, specifically cross-national 

comparison, might tell only a partial story or even reach misleading conclusions. All the factors 

described above point to some possible areas for future investigation in the context of 

comparative textbook analyses. Furthermore, the question of whether learning more content 

knowledge at earlier grades can lead to better knowledge development for students at different 

achievement levels remains unanswered.  

Looking ahead, we plan to pursue several different directions. The first one is to expand 

our textbook analysis of the concepts of triangle congruence to include the analysis of its 

connection to other curriculum units. Such analysis can then be connected back to the 
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curriculum standards to provide a more complete picture of the intended learning trajectories 

of this important geometric concept. The second direction is to study the enactment of triangle 

congruence lessons in the U.S. and Chinese classrooms. Specifically, we would like to see how 

the teachers and students jointly tell the story of the congruent triangles. We also would like to 

investigate the impact of using different types of tasks on student learning that will answer our 

own questions: “What learning opportunities can real-life problems and decontextualized 

problems provide?” and “What obstacles would students face encountering these different 

contexts?” In addition, we plan to consider examining assessments regarding the topic from the 

two countries and discuss the relationship as well as the alignment between the intended, 

enacted, and assessed curriculum. 

In this paper, we shared lessons we have learned from our own curriculum studies. 

Specifically, we used examples to illustrate adapting theoretical frameworks and using 

comparative methods in analysis. Hopefully, these lessons can provide a reference for future 

researchers who conduct curriculum studies. 
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